42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280 | def block_train(config):
""" Internal code block for AutoML training.
This function is called by the Command-Line-Interface (CLI) of AUCMEDI.
Args:
config (dict): Configuration dictionary containing all required
parameters for performing an AutoML training.
The following attributes are stored in the `config` dictionary:
Attributes:
path_imagedir (str): Path to the directory containing the images.
path_modeldir (str): Path to the output directory in which fitted models and metadata are stored.
path_gt (str): Path to the index/class annotation file if required. (only for 'csv' interface).
analysis (str): Analysis mode for the AutoML training. Options: `["minimal", "standard", "advanced"]`.
ohe (bool): Boolean option whether annotation data is sparse categorical or one-hot encoded.
three_dim (bool): Boolean, whether data is 2D or 3D.
shape_3D (tuple of int): Desired input shape of 3D volume for architecture (will be cropped).
epochs (int): Number of epochs. A single epoch is defined as one iteration through
the complete data set.
batch_size (int): Number of samples inside a single batch.
workers (int): Number of workers/threads which preprocess batches during runtime.
metalearner (str): Key for Metalearner or Aggregate function.
architecture (str or list of str): Key (str) of a neural network model Architecture class instance.
"""
# Obtain interface
if config["path_gt"] is None : config["interface"] = "directory"
else : config["interface"] = "csv"
# Peak into the dataset via the input interface
ds = input_interface(config["interface"],
config["path_imagedir"],
path_data=config["path_gt"],
training=True,
ohe=config["ohe"],
image_format=None)
(index_list, class_ohe, class_n, class_names, image_format) = ds
# Create output directory
if not os.path.exists(config["path_modeldir"]):
os.mkdir(config["path_modeldir"])
# Identify task (multi-class vs multi-label)
if np.sum(class_ohe) > class_ohe.shape[0] : config["multi_label"] = True
else : config["multi_label"] = False
# Sanity check on multi-label metalearner
multilabel_metalearner_supported = ["mlp", "k_neighbors", "random_forest",
"weighted_mean", "best_model",
"decision_tree", "mean", "median"]
if config["multi_label"] and config["analysis"] == "advanced" and \
config["metalearner"] not in multilabel_metalearner_supported:
raise ValueError("Non-compatible metalearner selected for multi-label"\
+ " classification. Supported metalearner:",
multilabel_metalearner_supported)
# Store meta information
config["class_names"] = class_names
path_meta = os.path.join(config["path_modeldir"], "meta.training.json")
with open(path_meta, "w") as json_io:
json.dump(config, json_io)
# Define Callbacks
callbacks = []
if config["analysis"] == "standard":
cb_loss = ModelCheckpoint(os.path.join(config["path_modeldir"],
"model.best_loss.keras"),
monitor="val_loss", verbose=1,
save_best_only=True)
callbacks.append(cb_loss)
if config["analysis"] in ["minimal", "standard"]:
cb_cl = CSVLogger(os.path.join(config["path_modeldir"],
"logs.training.csv"),
separator=',', append=True)
callbacks.append(cb_cl)
if config["analysis"] != "minimal":
cb_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5,
verbose=1, mode='min', min_lr=1e-7)
cb_es = EarlyStopping(monitor='val_loss', patience=12, verbose=1)
callbacks.extend([cb_lr, cb_es])
# Initialize loss function for multi-class
if not config["multi_label"]:
# Compute class weights
class_weights, _ = compute_class_weights(ohe_array=class_ohe)
# Initialize focal loss
loss = categorical_focal_loss(class_weights)
# Initialize loss function for multi-label
else:
# Compute class weights
class_weights = compute_multilabel_weights(ohe_array=class_ohe)
# Initialize focal loss
loss = multilabel_focal_loss(class_weights)
# Define neural network parameters
nn_paras = {"n_labels": class_n,
"channels": 3,
"loss": loss,
"metrics": [AUC(100)],
"pretrained_weights": True,
}
# Select input shape for 3D
if config["three_dim"] : nn_paras["input_shape"] = config["shape_3D"]
# Select task type
if config["multi_label"] : nn_paras["activation_output"] = "sigmoid"
else : nn_paras["activation_output"] = "softmax"
# Initialize Augmentation for 2D image data
if not config["three_dim"]:
data_aug = ImageAugmentation(flip=True, rotate=True, scale=False,
brightness=True, contrast=True,
saturation=False, hue=False, crop=False,
grid_distortion=False, compression=False,
gamma=True, gaussian_noise=False,
gaussian_blur=False, downscaling=False,
elastic_transform=True)
# Initialize Augmentation for 3D volume data
elif config["three_dim"]:
data_aug = BatchgeneratorsAugmentation(image_shape=config["shape_3D"],
mirror=True, rotate=True, scale=True,
elastic_transform=True, gaussian_noise=False,
brightness=False, contrast=False, gamma=True)
else : data_aug = None
# Subfunctions
sf_list = []
if config["three_dim"]:
sf_norm = Standardize(mode="grayscale")
sf_pad = Padding(mode="constant", shape=config["shape_3D"])
sf_crop = Crop(shape=config["shape_3D"], mode="random")
sf_chromer = Chromer(target="rgb")
sf_list.extend([sf_norm, sf_pad, sf_crop, sf_chromer])
# Define parameters for DataGenerator
paras_datagen = {
"path_imagedir": config["path_imagedir"],
"batch_size": config["batch_size"],
"img_aug": data_aug,
"subfunctions": sf_list,
"prepare_images": False,
"sample_weights": None,
"seed": None,
"image_format": image_format,
"workers": config["workers"],
}
if not config["three_dim"] : paras_datagen["loader"] = image_loader
else : paras_datagen["loader"] = sitk_loader
# Gather training parameters
paras_train = {
"epochs": config["epochs"],
"iterations": None,
"callbacks": callbacks,
"class_weights": None,
"transfer_learning": True,
}
# Apply MIC pipelines
if config["analysis"] == "minimal":
# Setup neural network
if not config["three_dim"] : arch_dim = "2D." + config["architecture"]
else : arch_dim = "3D." + config["architecture"]
model = NeuralNetwork(architecture=arch_dim, **nn_paras)
# Build DataGenerator
train_gen = DataGenerator(samples=index_list,
labels=class_ohe,
shuffle=True,
resize=model.meta_input,
standardize_mode=model.meta_standardize,
**paras_datagen)
# Start model training
hist = model.train(training_generator=train_gen, **paras_train)
# Store model
path_model = os.path.join(config["path_modeldir"], "model.last.keras")
model.dump(path_model)
elif config["analysis"] == "standard":
# Setup neural network
if not config["three_dim"] : arch_dim = "2D." + config["architecture"]
else : arch_dim = "3D." + config["architecture"]
model = NeuralNetwork(architecture=arch_dim, **nn_paras)
# Apply percentage split sampling
ps_sampling = sampling_split(index_list, class_ohe,
sampling=[0.85, 0.15],
stratified=True, iterative=True,
seed=0)
# Build DataGenerator
train_gen = DataGenerator(samples=ps_sampling[0][0],
labels=ps_sampling[0][1],
shuffle=True,
resize=model.meta_input,
standardize_mode=model.meta_standardize,
**paras_datagen)
val_gen = DataGenerator(samples=ps_sampling[1][0],
labels=ps_sampling[1][1],
shuffle=False,
resize=model.meta_input,
standardize_mode=model.meta_standardize,
**paras_datagen)
# Start model training
hist = model.train(training_generator=train_gen,
validation_generator=val_gen,
**paras_train)
# Store model
path_model = os.path.join(config["path_modeldir"], "model.last.keras")
model.dump(path_model)
else:
# Sanity check of architecutre config
if not isinstance(config["architecture"], list):
raise ValueError("key 'architecture' in config has to be a list " \
+ "if 'advanced' was selected as analysis.")
# Build multi-model list
model_list = []
for arch in config["architecture"]:
if not config["three_dim"] : arch_dim = "2D." + arch
else : arch_dim = "3D." + arch
model_part = NeuralNetwork(architecture=arch_dim, **nn_paras)
model_list.append(model_part)
el = Composite(model_list, metalearner=config["metalearner"],
k_fold=len(config["architecture"]))
# Build DataGenerator
train_gen = DataGenerator(samples=index_list,
labels=class_ohe,
shuffle=True,
resize=None,
standardize_mode=None,
**paras_datagen)
# Start model training
hist = el.train(training_generator=train_gen, **paras_train)
# Store model directory
el.dump(config["path_modeldir"])
# Plot fitting history
evaluate_fitting(train_history=hist, out_path=config["path_modeldir"])
|