Cli
Argparse for the AutoML Command Line Interface of aucmedi.automl.main.
The parameters are summarized in the docs: Documentation - AutoML - Parameters
cli_core()
¤
Internal function for Command-Line-Interface (CLI) setup.
Source code in aucmedi/automl/cli.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
|
cli_evaluation(subparsers)
¤
Parameter overview for the evaluation process.
Category | Argument | Type | Default | Description |
---|---|---|---|---|
I/O | --path_imagedir |
str | training |
Path to the directory containing the ground truth images. |
I/O | --path_gt |
str | None |
Path to the index/class annotation CSV file (only required for defining the ground truth via 'csv' instead of 'directory' interface). |
I/O | --ohe |
bool | False |
Boolean option whether annotation data is sparse categorical or one-hot encoded. |
I/O | --path_pred |
str | preds.csv |
Path to the input file in which predicted csv file is stored. |
I/O | --path_evaldir |
str | evaluation |
Path to the directory in which evaluation figures and tables should be stored. |
Other | --help |
bool | False |
show this help message and exit. |
Source code in aucmedi/automl/cli.py
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
|
cli_prediction(subparsers)
¤
Parameter overview for the prediction process.
Category | Argument | Type | Default | Description |
---|---|---|---|---|
I/O | --path_imagedir |
str | test |
Path to the directory containing the images. |
I/O | --path_modeldir |
str | model |
Path to the output directory in which fitted models and metadata are stored. |
I/O | --path_pred |
str | preds.csv |
Path to the output file in which predicted csv file should be stored. |
Configuration | --xai_method |
str | None |
Key for XAI method. |
Configuration | --xai_directory |
str | xai |
Path to the output directory in which predicted image xai heatmaps should be stored. |
Configuration | --batch_size |
int | 24 |
Number of samples inside a single batch. |
Configuration | --workers |
int | 1 |
Number of workers/threads which preprocess batches during runtime. |
Other | --help |
bool | False |
show this help message and exit. |
List of XAI Methods
AUCMEDI provides a large library of state-of-the-art and ready-to-use XAI methods: aucmedi.xai.methods
Source code in aucmedi/automl/cli.py
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
|
cli_training(subparsers)
¤
Parameter overview for the training process.
Category | Argument | Type | Default | Description |
---|---|---|---|---|
I/O | --path_imagedir |
str | training |
Path to the directory containing the images. |
I/O | --path_modeldir |
str | model |
Path to the output directory in which fitted models and metadata are stored. |
I/O | --path_gt |
str | None |
Path to the index/class annotation file if required. (only for 'csv' interface). |
I/O | --ohe |
bool | False |
Boolean option whether annotation data is sparse categorical or one-hot encoded. |
Configuration | --analysis |
str | standard |
Analysis mode for the AutoML training. Options: ["minimal", "standard", "advanced"] . |
Configuration | --three_dim |
bool | False |
Boolean, whether data is 2D or 3D. |
Configuration | --shape_3D |
str | 128x128x128 |
Desired input shape of 3D volume for architecture (will be cropped into, format: 1x2x3 ). |
Configuration | --epochs |
int | 500 |
Number of epochs. A single epoch is defined as one iteration through the complete data set. |
Configuration | --batch_size |
int | 24 |
Number of samples inside a single batch. |
Configuration | --workers |
int | 1 |
Number of workers/threads which preprocess batches during runtime. |
Configuration | --metalearner |
str | mean |
Key for Metalearner or Aggregate function. |
Configuration | --architecture |
str | DenseNet121 |
Key of single or multiple Architectures (only supported for 'analysis=advanced', format: 'KEY' or 'KEY,KEY,KEY). |
Other | --help |
bool | False |
show this help message and exit. |
List of Architectures
AUCMEDI provides a large library of state-of-the-art and ready-to-use architectures.
- 2D Architectures: aucmedi.neural_network.architectures.image
- 3D Architectures: aucmedi.neural_network.architectures.volume
List of Metalearner
- Homogeneous pooling functions: Aggregate
- Heterogeneous pooling functions: Metalearner
Source code in aucmedi/automl/cli.py
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
|