Skip to content

Aug image

ImageAugmentation ¤

The Image Augmentation class performs diverse augmentation methods on given numpy array. The class acts as an easy to use function/interface for applying all types of augmentations with just one function call.

The class can be configured beforehand by selecting desired augmentation techniques and method ranges or strength. Afterwards, the class is passed to the DataGenerator which utilizes it during batch generation.

The specific configurations of selected methods can be adjusted by class variables.

Build on top of the library

Albumentations - https://github.com/albumentations-team/albumentations

Source code in aucmedi/data_processing/augmentation/aug_image.py
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
class ImageAugmentation():
    """ The Image Augmentation class performs diverse augmentation methods on given
        numpy array. The class acts as an easy to use function/interface for applying
        all types of augmentations with just one function call.

    The class can be configured beforehand by selecting desired augmentation techniques
    and method ranges or strength.
    Afterwards, the class is passed to the [DataGenerator][aucmedi.data_processing.data_generator.DataGenerator]
    which utilizes it during batch generation.

    The specific configurations of selected methods can be adjusted by class variables.

    ???+ abstract "Build on top of the library"
        Albumentations - https://github.com/albumentations-team/albumentations
    """
    #-----------------------------------------------------#
    #              Augmentation Configuration             #
    #-----------------------------------------------------#
    # Define augmentation operator
    operator = None
    # Option for augmentation refinement (padding, cropping and clipping)
    refine = True
    # Augmentation: Flip
    aug_flip = False
    aug_flip_p = 0.5
    # Augmentation: 90 degree rotate
    aug_rotate = False
    aug_rotate_p = 0.5
    # Augmentation: Brightness
    aug_brightness = False
    aug_brightness_p = 0.5
    aug_brightness_limits = (-0.1, 0.1)
    # Augmentation: Contrast
    aug_contrast = False
    aug_contrast_p = 0.5
    aug_contrast_limits = (-0.1, 0.1)
    # Augmentation: Saturation shift
    aug_saturation = False
    aug_saturation_p = 0.5
    aug_saturation_limits = 0.1
    # Augmentation: Hue shift
    aug_hue = False
    aug_hue_p = 0.5
    aug_hue_limits = (-0.1, 0.1)
    # Augmentation: Scale
    aug_scale = False
    aug_scale_p = 0.5
    aug_scale_limits = (0.9, 1.1)
    # Augmentation: Crop
    aug_crop = False
    aug_crop_p = 0.5
    aug_crop_shape = (244, 244)
    # Augmentation: Grid Distortion
    aug_gridDistortion = False
    aug_gridDistortion_p = 0.5
    # Augmentation: Image Compression (JPEG)
    aug_compression = False
    aug_compression_p = 0.5
    aug_compression_limits = (90, 100)
    # Augmentation: Gaussian Noise
    aug_gaussianNoise = False
    aug_gaussianNoise_p = 0.5
    # Augmentation: Gaussian Blur
    aug_gaussianBlur = False
    aug_gaussianBlur_p = 0.5
    # Augmentation: Downscale
    aug_downscaling = False
    aug_downscaling_p = 0.5
    aug_downscaling_effect = 0.10
    # Augmentation: Gamma
    aug_gamma = False
    aug_gamma_p = 0.5
    aug_gamma_limit = (90, 110)
    # Augmentation: Elastic Transformation
    aug_elasticTransform = False
    aug_elasticTransform_p = 0.5

    #-----------------------------------------------------#
    #                    Initialization                   #
    #-----------------------------------------------------#
    def __init__(self, flip=True, rotate=True, brightness=True, contrast=True,
                 saturation=True, hue=True, scale=True, crop=False,
                 grid_distortion=False, compression=False, gaussian_noise=False,
                 gaussian_blur=False, downscaling=False, gamma=False,
                 elastic_transform=False):
        """ Initialization function for the Image Augmentation interface.

        With boolean switches, it is possible to selected desired augmentation techniques.
        Recommended augmentation configurations are defined as class variables.
        Of course, these configs can be adjusted if needed.

        Args:
            flip (bool):                    Boolean, whether flipping should be performed as data augmentation.
            rotate (bool):                  Boolean, whether rotations should be performed as data augmentation.
            brightness (bool):              Boolean, whether brightness changes should be added as data augmentation.
            contrast (bool):                Boolean, whether contrast changes should be added as data augmentation.
            saturation (bool):              Boolean, whether saturation changes should be added as data augmentation.
            hue (bool):                     Boolean, whether hue changes should be added as data augmentation.
            scale (bool):                   Boolean, whether scaling should be performed as data augmentation.
            crop (bool):                    Boolean, whether scaling cropping be performed as data augmentation.
            grid_distortion (bool):         Boolean, whether grid_distortion should be performed as data augmentation.
            compression (bool):             Boolean, whether compression should be performed as data augmentation.
            gaussian_noise (bool):          Boolean, whether gaussian noise should be added as data augmentation.
            gaussian_blur (bool):           Boolean, whether gaussian blur should be added as data augmentation.
            downscaling (bool):             Boolean, whether downscaling should be added as data augmentation.
            gamma (bool):                   Boolean, whether gamma changes should be added as data augmentation.
            elastic_transform (bool):       Boolean, whether elastic deformation should be performed as data augmentation.

        !!! warning
            If class variables (attributes) are modified, the internal augmentation operator
            has to be rebuilt via the following call:

            ```python
            # initialize
            aug = ImageAugmentation(flip=True)

            # set probability to 100% = always
            aug.aug_flip_p = 1.0
            # rebuild
            aug.build()
            ```

        Attributes:
            refine (bool):                  Boolean, whether clipping to [0,255] and padding/cropping should be performed if outside of range.
            aug_flip_p (float):             Probability of flipping application if activated. Default=0.5.
            aug_rotate_p (float):           Probability of rotation application if activated. Default=0.5.
            aug_brightness_p (float):       Probability of brightness application if activated. Default=0.5.
            aug_contrast_p (float):         Probability of contrast application if activated. Default=0.5.
            aug_saturation_p (float):       Probability of saturation application if activated. Default=0.5.
            aug_hue_p (float):              Probability of hue application if activated. Default=0.5.
            aug_scale_p (float):            Probability of scaling application if activated. Default=0.5.
            aug_crop_p (float):             Probability of crop application if activated. Default=0.5.
            aug_grid_distortion_p (float):  Probability of grid_distortion application if activated. Default=0.5.
            aug_compression_p (float):      Probability of compression application if activated. Default=0.5.
            aug_gaussianNoise_p (float):    Probability of gaussian noise application if activated. Default=0.5.
            aug_gaussianBlur_p (float):     Probability of gaussian blur application if activated. Default=0.5.
            aug_downscaling_p (float):      Probability of downscaling application if activated. Default=0.5.
            aug_gamma_p (float):            Probability of gamma application if activated. Default=0.5.
            aug_elasticTransform_p (float): Probability of elastic deformation application if activated. Default=0.5.
        """
        # Cache class variables
        self.aug_flip = flip
        self.aug_rotate = rotate
        self.aug_brightness = brightness
        self.aug_contrast = contrast
        self.aug_scale = scale
        self.aug_crop = crop
        self.aug_saturation = saturation
        self.aug_hue = hue
        self.aug_compression = compression
        self.aug_gaussianNoise = gaussian_noise
        self.aug_gaussianBlur= gaussian_blur
        self.aug_downscaling = downscaling
        self.aug_gamma = gamma
        self.aug_gridDistortion = grid_distortion
        self.aug_elasticTransform = elastic_transform
        # Build augmentation operator
        self.build()

    #-----------------------------------------------------#
    #                Albumentations Builder               #
    #-----------------------------------------------------#
    def build(self):
        """ Builds the albumenations augmentator by initializing  all transformations.

        The activated transformation and their configurations are defined as
        class variables.

        -> Builds a new self.operator
        """
        # Initialize transform list
        transforms = []
        # Fill transform list
        if self.aug_flip:
            tf = ai.Flip(p=self.aug_flip_p)
            transforms.append(tf)
        if self.aug_rotate:
            tf = ai.RandomRotate90(p=self.aug_rotate_p)
            transforms.append(tf)
        if self.aug_brightness:
            tf = ai.RandomBrightnessContrast(brightness_limit=self.aug_brightness_limits,
                                             contrast_limit=0,
                                             p=self.aug_brightness_p)
            transforms.append(tf)
        if self.aug_contrast:
            tf = ai.RandomBrightnessContrast(contrast_limit=self.aug_contrast_limits,
                                             brightness_limit=0,
                                             p=self.aug_contrast_p)
            transforms.append(tf)
        if self.aug_saturation:
            tf = ai.ColorJitter(brightness=0, contrast=0, hue=0,
                                saturation=self.aug_saturation_limits,
                                p=self.aug_saturation_p)
            transforms.append(tf)
        if self.aug_hue:
            tf = ai.ColorJitter(brightness=0, contrast=0, saturation=0,
                                hue=self.aug_hue_limits,
                                p=self.aug_hue_p)
            transforms.append(tf)
        if self.aug_scale:
            tf = ai.RandomScale(scale_limit=self.aug_scale_limits,
                                p=self.aug_scale_p)
            transforms.append(tf)
        if self.aug_crop:
            tf = ai.RandomCrop(width=self.aug_crop_shape[0],
                               height=self.aug_crop_shape[1],
                               p=self.aug_crop_p)
            transforms.append(tf)
        if self.aug_gridDistortion:
            tf = ai.GridDistortion(p=self.aug_gridDistortion_p)
            transforms.append(tf)
        if self.aug_compression:
            tf = ai.ImageCompression(quality_lower=self.aug_compression_limits[0],
                                     quality_upper=self.aug_compression_limits[1],
                                     p=self.aug_compression_p)
            transforms.append(tf)
        if self.aug_gaussianNoise:
            tf = ai.GaussNoise(p=self.aug_gaussianNoise_p)
            transforms.append(tf)
        if self.aug_gaussianBlur:
            tf = ai.GlassBlur(p=self.aug_gaussianBlur_p)
            transforms.append(tf)
        if self.aug_downscaling:
            tf = ai.Downscale(scale_min=self.aug_downscaling_effect,
                              scale_max=self.aug_downscaling_effect,
                              p=self.aug_downscaling_p)
            transforms.append(tf)
        if self.aug_gamma:
            tf = ai.RandomGamma(gamma_limit=self.aug_gamma_limit,
                                p=self.aug_gamma_p)
            transforms.append(tf)
        if self.aug_elasticTransform:
            tf = ai.ElasticTransform(p=self.aug_elasticTransform_p)
            transforms.append(tf)

        # Compose transforms
        self.operator = Compose(transforms)

    #-----------------------------------------------------#
    #                 Perform Augmentation                #
    #-----------------------------------------------------#
    def apply(self, image):
        """ Performs image augmentation with defined configuration on an image.

        This **internal** function is called in the DataGenerator during batch generation.

        Args:
            image (numpy.ndarray):          An image encoded as NumPy array with shape (x, y, channels).
        Returns:
            aug_image (numpy.ndarray):      An augmented / transformed image.
        """
        # Verify that image is in grayscale/RGB encoding
        if np.min(image) < 0 or np.max(image) > 255:
            warnings.warn("Image Augmentation: A value of the image is lower than 0 or higher than 255.",
                          "Albumentations expects images to be in grayscale/RGB!",
                          np.min(image), np.max(image))
        # Cache image shape
        org_shape = image.shape
        # Perform image augmentation
        aug_image = self.operator(image=image)["image"]
        # Perform padding & cropping if image shape changed
        if self.refine and aug_image.shape != org_shape:
            aug_image = ai.pad(aug_image, org_shape[0], org_shape[1], border_mode=cv2.BORDER_REPLICATE, 
                                value=0)
            aug_image = ai.RandomCrop(height=org_shape[0], width=org_shape[1])(image=aug_image)["image"]
        # Perform clipping if image is out of grayscale/RGB encodings
        if self.refine and (np.min(aug_image) < 0 or np.max(aug_image) > 255):
            aug_image = np.clip(aug_image, a_min=0, a_max=255)
        # Return augmented image
        return aug_image

__init__(flip=True, rotate=True, brightness=True, contrast=True, saturation=True, hue=True, scale=True, crop=False, grid_distortion=False, compression=False, gaussian_noise=False, gaussian_blur=False, downscaling=False, gamma=False, elastic_transform=False) ¤

Initialization function for the Image Augmentation interface.

With boolean switches, it is possible to selected desired augmentation techniques. Recommended augmentation configurations are defined as class variables. Of course, these configs can be adjusted if needed.

Parameters:

Name Type Description Default
flip bool

Boolean, whether flipping should be performed as data augmentation.

True
rotate bool

Boolean, whether rotations should be performed as data augmentation.

True
brightness bool

Boolean, whether brightness changes should be added as data augmentation.

True
contrast bool

Boolean, whether contrast changes should be added as data augmentation.

True
saturation bool

Boolean, whether saturation changes should be added as data augmentation.

True
hue bool

Boolean, whether hue changes should be added as data augmentation.

True
scale bool

Boolean, whether scaling should be performed as data augmentation.

True
crop bool

Boolean, whether scaling cropping be performed as data augmentation.

False
grid_distortion bool

Boolean, whether grid_distortion should be performed as data augmentation.

False
compression bool

Boolean, whether compression should be performed as data augmentation.

False
gaussian_noise bool

Boolean, whether gaussian noise should be added as data augmentation.

False
gaussian_blur bool

Boolean, whether gaussian blur should be added as data augmentation.

False
downscaling bool

Boolean, whether downscaling should be added as data augmentation.

False
gamma bool

Boolean, whether gamma changes should be added as data augmentation.

False
elastic_transform bool

Boolean, whether elastic deformation should be performed as data augmentation.

False

Warning

If class variables (attributes) are modified, the internal augmentation operator has to be rebuilt via the following call:

# initialize
aug = ImageAugmentation(flip=True)

# set probability to 100% = always
aug.aug_flip_p = 1.0
# rebuild
aug.build()

Attributes:

Name Type Description
refine bool

Boolean, whether clipping to [0,255] and padding/cropping should be performed if outside of range.

aug_flip_p float

Probability of flipping application if activated. Default=0.5.

aug_rotate_p float

Probability of rotation application if activated. Default=0.5.

aug_brightness_p float

Probability of brightness application if activated. Default=0.5.

aug_contrast_p float

Probability of contrast application if activated. Default=0.5.

aug_saturation_p float

Probability of saturation application if activated. Default=0.5.

aug_hue_p float

Probability of hue application if activated. Default=0.5.

aug_scale_p float

Probability of scaling application if activated. Default=0.5.

aug_crop_p float

Probability of crop application if activated. Default=0.5.

aug_grid_distortion_p float

Probability of grid_distortion application if activated. Default=0.5.

aug_compression_p float

Probability of compression application if activated. Default=0.5.

aug_gaussianNoise_p float

Probability of gaussian noise application if activated. Default=0.5.

aug_gaussianBlur_p float

Probability of gaussian blur application if activated. Default=0.5.

aug_downscaling_p float

Probability of downscaling application if activated. Default=0.5.

aug_gamma_p float

Probability of gamma application if activated. Default=0.5.

aug_elasticTransform_p float

Probability of elastic deformation application if activated. Default=0.5.

Source code in aucmedi/data_processing/augmentation/aug_image.py
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
def __init__(self, flip=True, rotate=True, brightness=True, contrast=True,
             saturation=True, hue=True, scale=True, crop=False,
             grid_distortion=False, compression=False, gaussian_noise=False,
             gaussian_blur=False, downscaling=False, gamma=False,
             elastic_transform=False):
    """ Initialization function for the Image Augmentation interface.

    With boolean switches, it is possible to selected desired augmentation techniques.
    Recommended augmentation configurations are defined as class variables.
    Of course, these configs can be adjusted if needed.

    Args:
        flip (bool):                    Boolean, whether flipping should be performed as data augmentation.
        rotate (bool):                  Boolean, whether rotations should be performed as data augmentation.
        brightness (bool):              Boolean, whether brightness changes should be added as data augmentation.
        contrast (bool):                Boolean, whether contrast changes should be added as data augmentation.
        saturation (bool):              Boolean, whether saturation changes should be added as data augmentation.
        hue (bool):                     Boolean, whether hue changes should be added as data augmentation.
        scale (bool):                   Boolean, whether scaling should be performed as data augmentation.
        crop (bool):                    Boolean, whether scaling cropping be performed as data augmentation.
        grid_distortion (bool):         Boolean, whether grid_distortion should be performed as data augmentation.
        compression (bool):             Boolean, whether compression should be performed as data augmentation.
        gaussian_noise (bool):          Boolean, whether gaussian noise should be added as data augmentation.
        gaussian_blur (bool):           Boolean, whether gaussian blur should be added as data augmentation.
        downscaling (bool):             Boolean, whether downscaling should be added as data augmentation.
        gamma (bool):                   Boolean, whether gamma changes should be added as data augmentation.
        elastic_transform (bool):       Boolean, whether elastic deformation should be performed as data augmentation.

    !!! warning
        If class variables (attributes) are modified, the internal augmentation operator
        has to be rebuilt via the following call:

        ```python
        # initialize
        aug = ImageAugmentation(flip=True)

        # set probability to 100% = always
        aug.aug_flip_p = 1.0
        # rebuild
        aug.build()
        ```

    Attributes:
        refine (bool):                  Boolean, whether clipping to [0,255] and padding/cropping should be performed if outside of range.
        aug_flip_p (float):             Probability of flipping application if activated. Default=0.5.
        aug_rotate_p (float):           Probability of rotation application if activated. Default=0.5.
        aug_brightness_p (float):       Probability of brightness application if activated. Default=0.5.
        aug_contrast_p (float):         Probability of contrast application if activated. Default=0.5.
        aug_saturation_p (float):       Probability of saturation application if activated. Default=0.5.
        aug_hue_p (float):              Probability of hue application if activated. Default=0.5.
        aug_scale_p (float):            Probability of scaling application if activated. Default=0.5.
        aug_crop_p (float):             Probability of crop application if activated. Default=0.5.
        aug_grid_distortion_p (float):  Probability of grid_distortion application if activated. Default=0.5.
        aug_compression_p (float):      Probability of compression application if activated. Default=0.5.
        aug_gaussianNoise_p (float):    Probability of gaussian noise application if activated. Default=0.5.
        aug_gaussianBlur_p (float):     Probability of gaussian blur application if activated. Default=0.5.
        aug_downscaling_p (float):      Probability of downscaling application if activated. Default=0.5.
        aug_gamma_p (float):            Probability of gamma application if activated. Default=0.5.
        aug_elasticTransform_p (float): Probability of elastic deformation application if activated. Default=0.5.
    """
    # Cache class variables
    self.aug_flip = flip
    self.aug_rotate = rotate
    self.aug_brightness = brightness
    self.aug_contrast = contrast
    self.aug_scale = scale
    self.aug_crop = crop
    self.aug_saturation = saturation
    self.aug_hue = hue
    self.aug_compression = compression
    self.aug_gaussianNoise = gaussian_noise
    self.aug_gaussianBlur= gaussian_blur
    self.aug_downscaling = downscaling
    self.aug_gamma = gamma
    self.aug_gridDistortion = grid_distortion
    self.aug_elasticTransform = elastic_transform
    # Build augmentation operator
    self.build()

apply(image) ¤

Performs image augmentation with defined configuration on an image.

This internal function is called in the DataGenerator during batch generation.

Parameters:

Name Type Description Default
image numpy.ndarray

An image encoded as NumPy array with shape (x, y, channels).

required

Returns:

Name Type Description
aug_image numpy.ndarray

An augmented / transformed image.

Source code in aucmedi/data_processing/augmentation/aug_image.py
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
def apply(self, image):
    """ Performs image augmentation with defined configuration on an image.

    This **internal** function is called in the DataGenerator during batch generation.

    Args:
        image (numpy.ndarray):          An image encoded as NumPy array with shape (x, y, channels).
    Returns:
        aug_image (numpy.ndarray):      An augmented / transformed image.
    """
    # Verify that image is in grayscale/RGB encoding
    if np.min(image) < 0 or np.max(image) > 255:
        warnings.warn("Image Augmentation: A value of the image is lower than 0 or higher than 255.",
                      "Albumentations expects images to be in grayscale/RGB!",
                      np.min(image), np.max(image))
    # Cache image shape
    org_shape = image.shape
    # Perform image augmentation
    aug_image = self.operator(image=image)["image"]
    # Perform padding & cropping if image shape changed
    if self.refine and aug_image.shape != org_shape:
        aug_image = ai.pad(aug_image, org_shape[0], org_shape[1], border_mode=cv2.BORDER_REPLICATE, 
                            value=0)
        aug_image = ai.RandomCrop(height=org_shape[0], width=org_shape[1])(image=aug_image)["image"]
    # Perform clipping if image is out of grayscale/RGB encodings
    if self.refine and (np.min(aug_image) < 0 or np.max(aug_image) > 255):
        aug_image = np.clip(aug_image, a_min=0, a_max=255)
    # Return augmented image
    return aug_image

build() ¤

Builds the albumenations augmentator by initializing all transformations.

The activated transformation and their configurations are defined as class variables.

-> Builds a new self.operator

Source code in aucmedi/data_processing/augmentation/aug_image.py
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
def build(self):
    """ Builds the albumenations augmentator by initializing  all transformations.

    The activated transformation and their configurations are defined as
    class variables.

    -> Builds a new self.operator
    """
    # Initialize transform list
    transforms = []
    # Fill transform list
    if self.aug_flip:
        tf = ai.Flip(p=self.aug_flip_p)
        transforms.append(tf)
    if self.aug_rotate:
        tf = ai.RandomRotate90(p=self.aug_rotate_p)
        transforms.append(tf)
    if self.aug_brightness:
        tf = ai.RandomBrightnessContrast(brightness_limit=self.aug_brightness_limits,
                                         contrast_limit=0,
                                         p=self.aug_brightness_p)
        transforms.append(tf)
    if self.aug_contrast:
        tf = ai.RandomBrightnessContrast(contrast_limit=self.aug_contrast_limits,
                                         brightness_limit=0,
                                         p=self.aug_contrast_p)
        transforms.append(tf)
    if self.aug_saturation:
        tf = ai.ColorJitter(brightness=0, contrast=0, hue=0,
                            saturation=self.aug_saturation_limits,
                            p=self.aug_saturation_p)
        transforms.append(tf)
    if self.aug_hue:
        tf = ai.ColorJitter(brightness=0, contrast=0, saturation=0,
                            hue=self.aug_hue_limits,
                            p=self.aug_hue_p)
        transforms.append(tf)
    if self.aug_scale:
        tf = ai.RandomScale(scale_limit=self.aug_scale_limits,
                            p=self.aug_scale_p)
        transforms.append(tf)
    if self.aug_crop:
        tf = ai.RandomCrop(width=self.aug_crop_shape[0],
                           height=self.aug_crop_shape[1],
                           p=self.aug_crop_p)
        transforms.append(tf)
    if self.aug_gridDistortion:
        tf = ai.GridDistortion(p=self.aug_gridDistortion_p)
        transforms.append(tf)
    if self.aug_compression:
        tf = ai.ImageCompression(quality_lower=self.aug_compression_limits[0],
                                 quality_upper=self.aug_compression_limits[1],
                                 p=self.aug_compression_p)
        transforms.append(tf)
    if self.aug_gaussianNoise:
        tf = ai.GaussNoise(p=self.aug_gaussianNoise_p)
        transforms.append(tf)
    if self.aug_gaussianBlur:
        tf = ai.GlassBlur(p=self.aug_gaussianBlur_p)
        transforms.append(tf)
    if self.aug_downscaling:
        tf = ai.Downscale(scale_min=self.aug_downscaling_effect,
                          scale_max=self.aug_downscaling_effect,
                          p=self.aug_downscaling_p)
        transforms.append(tf)
    if self.aug_gamma:
        tf = ai.RandomGamma(gamma_limit=self.aug_gamma_limit,
                            p=self.aug_gamma_p)
        transforms.append(tf)
    if self.aug_elasticTransform:
        tf = ai.ElasticTransform(p=self.aug_elasticTransform_p)
        transforms.append(tf)

    # Compose transforms
    self.operator = Compose(transforms)