Io loader
The IO Loader functions of AUCMEDI allow loading samples from datasets in different file formats.
These functions are called internally via the DataGenerator.
IO_loader Functions
Interface | Description |
---|---|
image_loader() | Image Loader for image loading via Pillow. |
sitk_loader() | SimpleITK Loader for loading NIfTI (nii) or Metafile (mha) formats. |
numpy_loader() | NumPy Loader for image loading of .npy files. |
cache_loader() | Cache Loader for passing already loaded images. |
Parameters defined in **kwargs
are passed down to IO_loader functions.
Example
# Import required libraries
from aucmedi import *
# Initialize input data reader
ds = input_interface(interface="csv",
path_imagedir="dataset/images/",
path_data="dataset/annotations.csv",
ohe=False, col_sample="ID", col_class="diagnosis")
(samples, class_ohe, nclasses, class_names, image_format) = ds
# Initialize DataGenerator with by default using image_loader
data_gen = DataGenerator(samples, "dataset/images/", labels=class_ohe,
image_format=image_format, resize=None)
# Initialize DataGenerator with manually selected image_loader
from aucmedi.data_processing.io_loader import image_loader
data_gen = DataGenerator(samples, "dataset/images/", labels=class_ohe,
image_format=image_format, resize=None,
loader=image_loader)