Numpy loader
numpy_loader(sample, path_imagedir, image_format=None, grayscale=False, two_dim=True, **kwargs)
ยค
NumPy Loader for image loading within the AUCMEDI pipeline.
The NumPy Loader is an IO_loader function, which have to be passed to the DataGenerator.
The NumPy load function np.load(path_img, allow_pickle=True)
is used.
Example
# Import required libraries
from aucmedi import *
from aucmedi.data_processing.io_loader import numpy_loader
# Initialize input data reader
ds = input_interface(interface="csv",
path_imagedir="dataset/npy_files/",
path_data="dataset/annotations.csv",
ohe=False, col_sample="ID", col_class="diagnosis")
(samples, class_ohe, nclasses, class_names, image_format) = ds
# Initialize DataGenerator with numpy_loader
data_gen = DataGenerator(samples, "dataset/npy_files/", labels=class_ohe,
image_format=image_format, resize=None,
grayscale=True, two_dim=False,
loader=numpy_loader)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sample |
str
|
Sample name/index of an image. |
required |
path_imagedir |
str
|
Path to the directory containing the images. |
required |
image_format |
str
|
Image format to add at the end of the sample index for image loading. |
None
|
grayscale |
bool
|
Boolean, whether images are grayscale or RGB. |
False
|
two_dim |
bool
|
Boolean, whether image is 2D or 3D. |
True
|
**kwargs |
dict
|
Additional parameters for the sample loader. |
{}
|
Source code in aucmedi/data_processing/io_loader/numpy_loader.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
|