Bases: Subfunction_Base
A Padding Subfunction class which pads an images according to a desired shape.
Standard application is to square images to keep original aspect ratio.
If another mode as "square" is selected, than a shape and NumPy pad mode is required!
Shape should be defined as tuple with x and y size:
Padding(mode="edge", shape=(224, 224))
Padding is done via NumPy pad function which uses can be called with different
modes like "edge" or "minimum".
https://numpy.org/doc/stable/reference/generated/numpy.pad.html
Source code in aucmedi/data_processing/subfunctions/padding.py
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81 | class Padding(Subfunction_Base):
""" A Padding Subfunction class which pads an images according to a desired shape.
Standard application is to square images to keep original aspect ratio.
If another mode as "square" is selected, than a shape and NumPy pad mode is required!
Shape should be defined as tuple with x and y size: <br>
`Padding(mode="edge", shape=(224, 224))`
Padding is done via NumPy pad function which uses can be called with different
modes like "edge" or "minimum". <br>
https://numpy.org/doc/stable/reference/generated/numpy.pad.html
"""
#---------------------------------------------#
# Initialization #
#---------------------------------------------#
def __init__(self, mode="square", shape=None):
""" Initialization function for creating a Padding Subfunction which can be passed to a
[DataGenerator][aucmedi.data_processing.data_generator.DataGenerator].
Args:
mode (str): Selected mode for image padding. If not `"square"`, then NumPy modes are used.
shape (tuple of int): Minimum image shape for non-`"square"` modes.
"""
self.shape = shape
self.mode = mode
#---------------------------------------------#
# Transformation #
#---------------------------------------------#
def transform(self, image):
# Identify new shape
if self.mode == "square":
max_axis = max(image.shape[:-1])
new_shape = [max_axis for x in range(0, len(image.shape[:-1]))]
else:
new_shape = [max(self.shape[i],image.shape[i]) \
for i in range(0, len(image.shape[:-1]))]
# Compute padding width
## Code inspiration from: https://github.com/MIC-DKFZ/batchgenerators/blob/master/batchgenerators/augmentations/utils.py
## Leave a star for them if you are reading this. The MIC-DKFZ is doing some great work ;)
difference = new_shape - np.asarray(image.shape[0:-1])
pad_below = difference // 2
pad_above = difference // 2 + difference % 2
pad_list = list([list(i) for i in zip(pad_below, pad_above)]) + [[0, 0]]
# Identify correct NumPy pad mode
if self.mode == "square" : pad_mode = "edge"
else : pad_mode = self.mode
# Perform padding into desired shape
image_padded = np.pad(image, pad_list, mode=pad_mode)
# Return padded image
return image_padded
|
__init__(mode='square', shape=None)
Initialization function for creating a Padding Subfunction which can be passed to a
DataGenerator.
Parameters:
Name |
Type |
Description |
Default |
mode |
str
|
Selected mode for image padding. If not "square" , then NumPy modes are used. |
'square'
|
shape |
tuple of int
|
Minimum image shape for non-"square" modes. |
None
|
Source code in aucmedi/data_processing/subfunctions/padding.py
46
47
48
49
50
51
52
53
54
55 | def __init__(self, mode="square", shape=None):
""" Initialization function for creating a Padding Subfunction which can be passed to a
[DataGenerator][aucmedi.data_processing.data_generator.DataGenerator].
Args:
mode (str): Selected mode for image padding. If not `"square"`, then NumPy modes are used.
shape (tuple of int): Minimum image shape for non-`"square"` modes.
"""
self.shape = shape
self.mode = mode
|