Agg base
Aggregate_Base
¤
Bases: ABC
An abstract base class for an Aggregation class.
Assembled predictions encoded in a NumPy matrix with shape (N_models, N_classes).
Example: [[0.5, 0.4, 0.1],
[0.4, 0.3, 0.3],
[0.5, 0.2, 0.3]]
-> shape (3, 3)
Merged prediction encoded in a NumPy matrix with shape (1, N_classes).
Example: [[0.4, 0.3, 0.3]]
-> shape (1, 3)
Create a custom Aggregation class
from aucmedi.ensemble.aggregate.agg_base import Aggregate_Base
class My_custom_Aggregate(Aggregate_Base):
def __init__(self): # you can pass class variables here
pass
def aggregate(self, preds):
preds_combined = np.mean(preds, axis=0) # do some combination operation
return preds_combined # return combined predictions
Required Functions
Function | Description |
---|---|
__init__() |
Object creation function. |
aggregate() |
Merge multiple class predictions into a single prediction. |
Source code in aucmedi/ensemble/aggregate/agg_base.py
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
|
__init__()
abstractmethod
¤
Initialization function which will be called during the Aggregation object creation.
This function can be used to pass variables and options in the Aggregation instance. There are no mandatory parameters for the initialization.
Source code in aucmedi/ensemble/aggregate/agg_base.py
65 66 67 68 69 70 71 72 |
|
aggregate(preds)
abstractmethod
¤
Aggregate the image by merging multiple predictions into a single one.
It is required to return the merged predictions (as NumPy matrix). It is possible to pass configurations through the initialization function for this class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
preds |
numpy.ndarray
|
Assembled predictions encoded in a NumPy matrix with shape (N_models, N_classes). |
required |
Returns:
Name | Type | Description |
---|---|---|
pred |
numpy.ndarray
|
Merged prediction encoded in a NumPy matrix with shape (1, N_classes). |
Source code in aucmedi/ensemble/aggregate/agg_base.py
76 77 78 79 80 81 82 83 84 85 86 87 88 |
|