Composite
Composite
¤
A Composite class providing functionality for cross-validation and metalearner based ensemble learning.
The Composite strategy combines the homogeneous Bagging and the heterogeneous Stacking technique.
If a metalearner is selected, a percentage sampling split is applied. For an aggregate function, this is not done. The remaining training data is sampled via a cross-validation. For each fold, a different model is trained returning into a heterogenous ensemble. Predictions for this heterogenous ensemble are combined with the fitted metalearner model or an aggregate function.
Instead of utilizing the fixed parameters of the DataGenerator,
default paramters for Resizing and Standardize of the associated models are used (if fixed_datagenerator=True
).
Example
# Initialize some NeuralNetwork models
model_a = NeuralNetwork(n_labels=4, channels=3, architecture="2D.ResNet50")
model_b = NeuralNetwork(n_labels=4, channels=3, architecture="2D.MobileNetV2")
model_c = NeuralNetwork(n_labels=4, channels=3, architecture="2D.EfficientNetB1")
# Initialize Composite object
el = Composite(model_list=[model_a, model_b, model_c],
metalearner="logistic_regression", k_fold=3)
# Initialize training DataGenerator for complete training data
datagen = DataGenerator(samples_train, "images_dir/",
labels=train_labels_ohe, batch_size=3,
resize=None, standardize_mode=None)
# Train neural network and metalearner models
el.train(datagen, epochs=100)
# Initialize testing DataGenerator for testing data
test_gen = DataGenerator(samples_test, "images_dir/",
resize=None, standardize_mode=None)
# Run Inference
preds = el.predict(test_gen)
Training Time Increase
Composite sequentially performs fitting processes for multiple models, which will drastically increase training time.
DataGenerator re-initialization
The passed DataGenerator for the train() and predict() function of the Composite class will be re-initialized!
This can result in redundant image preparation if prepare_images=True
.
Furthermore, the parameters resize
and standardize_mode
are automatically re-initialized with
NeuralNetwork model specific values (model.meta_standardize
for standardize_mode
and
model.meta_input
for input_shape
).
If desired (but not recommended!), it is possible to modify the meta variables of the NeuralNetwork model as follows:
# For input_shape
model_a = NeuralNetwork(n_labels=4, channels=3, architecture="2D.ResNet50",
input_shape=(64,64))
# For standardize_mode
model_b = NeuralNetwork(n_labels=4, channels=3, architecture="2D.MobileNetV2")
model_b.meta_standardize = "torch"
NeuralNetwork re-initialization
The passed NeuralNetwork for the train() and predict() function of the Composite class will be re-initialized!
Attention: Metrics are not passed to the processes due to pickling issues.
Technical Details
For the training and inference process, each model will create an individual process via the Python multiprocessing package.
This is crucial as TensorFlow does not fully support the VRAM memory garbage collection in GPUs, which is why more and more redundant data pile up with an increasing number of models.
Via separate processes, it is possible to clean up the TensorFlow environment and rebuild it again for the next model.
Source code in aucmedi/ensemble/composite.py
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 |
|
__init__(model_list, metalearner='logistic_regression', k_fold=3, sampling=[0.85, 0.15], fixed_datagenerator=False)
¤
Initialization function for creating a Composite object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_list |
list of NeuralNetwork
|
List of instances of AUCMEDI neural network class.
The number of models ( |
required |
metalearner |
str, Metalearner or Aggregate
|
Metalearner class instance / a string for an AUCMEDI Metalearner, or Aggregate function / a string for an AUCMEDI Aggregate function. |
'logistic_regression'
|
k_fold |
int
|
Number of folds (k) for the Cross-Validation. Must be at least 2. |
3
|
sampling |
list of float
|
List of percentage values with split sizes. Should be 2x percentage values for heterogenous metalearner (must sum up to 1.0). |
[0.85, 0.15]
|
fixed_datagenerator |
bool
|
Boolean, whether using fixed parameters of passed DataGenerator or using default architecture paramters for Resizing and Standardize. |
False
|
Source code in aucmedi/ensemble/composite.py
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
|
dump(directory_path)
¤
Store temporary Composite models directory permanently to disk at desired location.
If the model directory is a provided path which is already persistent on the disk, the directory is copied in order to keep original data persistent.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
directory_path |
str
|
Path to store the model directory on disk. |
required |
Source code in aucmedi/ensemble/composite.py
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 |
|
load(directory_path)
¤
Load a Composite model directory which can be used for Metalearner based inference.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
directory_path |
str
|
Input path, from which the Composite models will be loaded. |
required |
Source code in aucmedi/ensemble/composite.py
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 |
|
predict(prediction_generator, return_ensemble=False)
¤
Prediction function for Composite.
The fitted models and selected Metalearner/Aggregate function will predict classifications for the provided DataGenerator.
Info
More about Metalearners can be found here: Metelearner
More about Aggregate functions can be found here: aggregate
Parameters:
Name | Type | Description | Default |
---|---|---|---|
prediction_generator |
DataGenerator
|
A data generator which will be used for inference. |
required |
return_ensemble |
bool
|
Option, whether gathered ensemble of predictions should be returned. |
False
|
Returns:
Name | Type | Description |
---|---|---|
preds |
numpy.ndarray
|
A NumPy array of predictions formatted with shape (n_samples, n_labels). |
ensemble |
numpy.ndarray
|
Optional ensemble of predictions: Will be only passed if |
Source code in aucmedi/ensemble/composite.py
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
|
train(training_generator, epochs=20, iterations=None, callbacks=[], class_weights=None, transfer_learning=False, metalearner_fitting=True)
¤
Training function for fitting the provided NeuralNetwork models.
The training data will be sampled according to a percentage split in which DataGenerators for model training and metalearner training if a metalearner is provided. Else all data is used as model training subset. The model training subset is furthermore sampled via cross-validation.
It is also possible to pass custom Callback classes in order to obtain more information.
For more information on the fitting process, check out NeuralNetwork.train().
Parameters:
Name | Type | Description | Default |
---|---|---|---|
training_generator |
DataGenerator
|
A data generator which will be used for training (will be split according to percentage split and k-fold cross-validation sampling). |
required |
epochs |
int
|
Number of epochs. A single epoch is defined as one iteration through the complete data set. |
20
|
iterations |
int
|
Number of iterations (batches) in a single epoch. |
None
|
callbacks |
list of Callback classes
|
A list of Callback classes for custom evaluation. |
[]
|
class_weights |
dictionary or list
|
A list or dictionary of float values to handle class unbalance. |
None
|
transfer_learning |
bool
|
Option whether a transfer learning training should be performed. |
False
|
metalearner_fitting |
bool
|
Option whether the Metalearner fitting process should be included in the
Composite training process. The |
True
|
Returns:
Name | Type | Description |
---|---|---|
history |
dict
|
A history dictionary from a Keras history object which contains several logs. |
Source code in aucmedi/ensemble/composite.py
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
|
train_metalearner(training_generator)
¤
Training function for fitting the Metalearner model.
Function will be called automatically in the train()
function if
the parameter metalearner_fitting
is true.
However, this function can also be called multiple times for training different Metalearner types without the need of time-extensive re-training of the NeuralNetwork models.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
training_generator |
DataGenerator
|
A data generator which will be used for training (will be split according to percentage split). |
required |
Source code in aucmedi/ensemble/composite.py
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
|