Ml base
Metalearner_Base
¤
Bases: ABC
An abstract base class for a Metalearner class.
Metalearner are similar to Aggregate functions, however Metalearners are models which require fitting before usage.
Metalearners are utilized in Stacking pipelines.
A Metalearner act as a combiner algorithm which is trained to make a final prediction
using predictions of other algorithms (NeuralNetwork
) as inputs.
Assembled predictions encoded in a NumPy matrix with shape (N_models, N_classes).
Example: [[0.5, 0.4, 0.1],
[0.4, 0.3, 0.3],
[0.5, 0.2, 0.3]]
-> shape (3, 3)
Merged prediction encoded in a NumPy matrix with shape (1, N_classes).
Example: [[0.4, 0.3, 0.3]]
-> shape (1, 3)
Required Functions
Function | Description |
---|---|
__init__() |
Object creation function. |
training() |
Fit Metalearner model. |
prediction() |
Merge multiple class predictions into a single prediction. |
dump() |
Store Metalearner model to disk. |
load() |
Load Metalearner model from disk. |
Source code in aucmedi/ensemble/metalearner/ml_base.py
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
|
__init__()
abstractmethod
¤
Initialization function which will be called during the Metalearner object creation.
This function can be used to pass variables and options in the Metalearner instance. There are no mandatory parameters for the initialization.
Source code in aucmedi/ensemble/metalearner/ml_base.py
63 64 65 66 67 68 69 70 |
|
dump(path)
abstractmethod
¤
Store Metalearner model to disk.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path |
str
|
Path to store the model on disk. |
required |
Source code in aucmedi/ensemble/metalearner/ml_base.py
106 107 108 109 110 111 112 113 |
|
load(path)
abstractmethod
¤
Load Metalearner model and its weights from a file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path |
str
|
Input path from which the model will be loaded. |
required |
Source code in aucmedi/ensemble/metalearner/ml_base.py
118 119 120 121 122 123 124 125 |
|
predict(data)
abstractmethod
¤
Merge multiple predictions for a sample into a single prediction.
It is required to return the merged predictions (as NumPy matrix). It is possible to pass configurations through the initialization function for this class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
numpy.ndarray
|
Assembled predictions encoded in a NumPy matrix with shape (N_models, N_classes). |
required |
Returns:
Name | Type | Description |
---|---|---|
pred |
numpy.ndarray
|
Merged prediction encoded in a NumPy matrix with shape (1, N_classes). |
Source code in aucmedi/ensemble/metalearner/ml_base.py
89 90 91 92 93 94 95 96 97 98 99 100 101 |
|
train(x, y)
abstractmethod
¤
Training function to fit the Metalearner model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x |
numpy.ndarray
|
Assembled prediction dataset encoded in a NumPy matrix with shape (N_samples, N_classes*N_models). |
required |
y |
numpy.ndarray
|
Classification list with One-Hot Encoding. Provided by input_interface. |
required |
Source code in aucmedi/ensemble/metalearner/ml_base.py
75 76 77 78 79 80 81 82 83 84 |
|