Skip to content

Classifier

Classifier ¤

A powerful interface for all types of image classifications.

This class will be created automatically inside the NeuralNetwork class.

Supported Features

  • Binary classification
  • Multi-class classification
  • Multi-label classification
  • 2D/3D data
  • Metadata encoded as NumPy arrays (int or float)

This class provides functionality for building a classification head for an Architecture (tensorflow.keras model). A initialized classifier interface is passed to an architecture class. The build() function of the classification head is called in the create_model() function of the architecture.

Structure of the AUCMEDI Classification Head

Layer Description
GlobalAveragePooling Pooling from Architecture Output to a single spatial dimensions.
Dense(units=512) Optional dense & dropout layer if fcl_dropout=True.
Dropout(0.3) Optional dense & dropout layer if fcl_dropout=True.
Concatenate() Optional appending of metadata to classification head.
Dense(units=512) Optional dense & dropout layer if metadata is present.
Dropout(0.3) Optional dense & dropout layer if metadata is present.
Dense(units=256) Optional dense & dropout layer if metadata is present.
Dropout(0.3) Optional dense & dropout layer if metadata is present.
Dense(units=n_labels) Dense layer to the number of labels (classes).
Activation(activation_output) Activation function corresponding to classification type.
Classification Types
Type Activation Function
Binary classification activation_output="softmax": Only a single class is correct.
Multi-class classification activation_output="softmax": Only a single class is correct.
Multi-label classification activation_output="sigmoid": Multiple classes can be correct.

For more information on multi-class vs multi-label, check out this blog post from Rachel Draelos:
https://glassboxmedicine.com/2019/05/26/classification-sigmoid-vs-softmax/

The recommended way is to pass all required variables to the NeuralNetwork which automatically creates the Classifier and passes it to the Architecture.

Example
# Recommended way (automatic creation in NeuralNetwork)
model = NeuralNetwork(n_labels=20, channels=3,
                      input_shape=(32, 32), activation_output="sigmoid",
                      fcl_dropout=False)

# Manual way
from aucmedi.neural_network.architectures import Classifier
from aucmedi.neural_network.architectures.image import Vanilla

classification_head = Classifier(n_labels=20, fcl_dropout=False,
                                 activation_output="sigmoid")
arch = Vanilla(classification_head, channels=3,
               input_shape=(32, 32))
Example: How to integrate metadata in AUCMEDI?
from aucmedi import *
import numpy as np

my_metadata = np.random.rand(len(samples), 10)

my_model = NeuralNetwork(n_labels=8, channels=3, architecture="2D.DenseNet121",
                          meta_variables=10)

my_dg = DataGenerator(samples, "images_dir/",
                      labels=None, metadata=my_metadata,
                      resize=my_model.meta_input,                  # (224,224)
                      standardize_mode=my_model.meta_standardize)  # "torch"
Source code in aucmedi/neural_network/architectures/classifier.py
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
class Classifier:
    """ A powerful interface for all types of image classifications.

    This class will be created automatically inside the [NeuralNetwork][aucmedi.neural_network.model.NeuralNetwork] class.

    !!! info "Supported Features"
        - Binary classification
        - Multi-class classification
        - Multi-label classification
        - 2D/3D data
        - Metadata encoded as NumPy arrays (int or float)

    This class provides functionality for building a classification head for an
    [Architecture][aucmedi.neural_network.architectures]
    ([tensorflow.keras model](https://www.tensorflow.org/api_docs/python/tf/keras/Model)).
    A initialized classifier interface is passed to an architecture class.
    The `build()` function of the classification head is called in the `create_model()`
    function of the architecture.

    !!! info "Structure of the AUCMEDI Classification Head"
        | Layer                         | Description                                                      |
        | ----------------------------- | ---------------------------------------------------------------- |
        | GlobalAveragePooling          | Pooling from Architecture Output to a single spatial dimensions. |
        | Dense(units=512)              | Optional dense & dropout layer if `fcl_dropout=True`.            |
        | Dropout(0.3)                  | Optional dense & dropout layer if `fcl_dropout=True`.            |
        | Concatenate()                 | Optional appending of metadata to classification head.           |
        | Dense(units=512)              | Optional dense & dropout layer if metadata is present.           |
        | Dropout(0.3)                  | Optional dense & dropout layer if metadata is present.           |
        | Dense(units=256)              | Optional dense & dropout layer if metadata is present.           |
        | Dropout(0.3)                  | Optional dense & dropout layer if metadata is present.           |
        | Dense(units=n_labels)         | Dense layer to the number of labels (classes).                   |
        | Activation(activation_output) | Activation function corresponding to classification type.        |

    ???+ note "Classification Types"
        | Type                       | Activation Function                                             |
        | -------------------------- | --------------------------------------------------------------- |
        | Binary classification      | `activation_output="softmax"`: Only a single class is correct.  |
        | Multi-class classification | `activation_output="softmax"`: Only a single class is correct.  |
        | Multi-label classification | `activation_output="sigmoid"`: Multiple classes can be correct. |

        For more information on multi-class vs multi-label, check out this blog post from Rachel Draelos: <br>
        [https://glassboxmedicine.com/2019/05/26/classification-sigmoid-vs-softmax/](https://glassboxmedicine.com/2019/05/26/classification-sigmoid-vs-softmax/)

    The recommended way is to pass all required variables to the [NeuralNetwork][aucmedi.neural_network.model.NeuralNetwork]
    which automatically creates the Classifier and passes it to the Architecture.

    ???+ example
        ```python
        # Recommended way (automatic creation in NeuralNetwork)
        model = NeuralNetwork(n_labels=20, channels=3,
                              input_shape=(32, 32), activation_output="sigmoid",
                              fcl_dropout=False)

        # Manual way
        from aucmedi.neural_network.architectures import Classifier
        from aucmedi.neural_network.architectures.image import Vanilla

        classification_head = Classifier(n_labels=20, fcl_dropout=False,
                                         activation_output="sigmoid")
        arch = Vanilla(classification_head, channels=3,
                       input_shape=(32, 32))
        ```

    ??? example "Example: How to integrate metadata in AUCMEDI?"
        ```python
        from aucmedi import *
        import numpy as np

        my_metadata = np.random.rand(len(samples), 10)

        my_model = NeuralNetwork(n_labels=8, channels=3, architecture="2D.DenseNet121",
                                  meta_variables=10)

        my_dg = DataGenerator(samples, "images_dir/",
                              labels=None, metadata=my_metadata,
                              resize=my_model.meta_input,                  # (224,224)
                              standardize_mode=my_model.meta_standardize)  # "torch"
        ```
    """
    #---------------------------------------------#
    #                Initialization               #
    #---------------------------------------------#
    def __init__(self, n_labels, activation_output="softmax",
                 meta_variables=None, fcl_dropout=True):
        """ Initialization function for creating a Classifier object.

        The fully connected layer and dropout option (`fcl_dropout`) utilizes a 512 unit Dense layer with 30% Dropout.

        Modi for activation_output: Check out [TensorFlow.Keras doc on activation functions](https://www.tensorflow.org/api_docs/python/tf/keras/activations).

        Args:
            n_labels (int):                 Number of classes/labels (important for the last layer of classification head).
            activation_output (str):        Activation function which is used in the last classification layer.
            meta_variables (int):           Number of metadata variables, which should be included in the classification head.
                                            If `None`is provided, no metadata integration block will be added to the classification head.
            fcl_dropout (bool):             Option whether to utilize a Dense & Dropout layer before the last classification layer.
        """
        self.n_labels = n_labels
        self.activation_output = activation_output
        self.meta_variables = meta_variables
        self.fcl_dropout = fcl_dropout

    #---------------------------------------------#
    #                Create Model                 #
    #---------------------------------------------#
    def build(self, model_input, model_output):
        """ Internal function which appends the classification head.

        This function will be called from inside an [Architecture][aucmedi.neural_network.architectures] `create_model()` function
        and must return a functional Keras model.
        The `build()` function will append a classification head to the provided Keras model.

        Args:
            model_input (tf.keras layer):       Input layer of the model.
            model_output (tf.keras layer):      Output layer of the model.

        Returns:
            model (tf.keras model):             A functional Keras model.
        """
        # Apply GlobalAveragePooling to obtain a single spatial dimensions
        if len(model_output.shape) == 4:            # for 2D architectures
            model_head = layers.GlobalAveragePooling2D(name="avg_pool")(model_output)
        elif len(model_output.shape) == 5:          # for 3D architectures
            model_head = layers.GlobalAveragePooling3D(name="avg_pool")(model_output)
        # if not model output shape 4 or 5 -> it is already GlobalAveragePooled to 2 dim
        else : model_head = model_output

        # Apply optional dense & dropout layer
        if self.fcl_dropout:
            model_head = layers.Dense(units=512)(model_head)
            model_head = layers.Dropout(0.3)(model_head)

        # Apply metadata integration block
        if self.meta_variables is not None:
            # Define metadata input
            model_meta = Input(shape=(self.meta_variables,))

            # Integrate metadata into classification had
            model_head = layers.concatenate([model_head, model_meta])

            # Apply additional densely-connected NN layers
            model_head = layers.Dense(units=512, activation="relu")(model_head)
            model_head = layers.Dropout(0.3)(model_head)
            model_head = layers.Dense(units=256, activation="relu")(model_head)
            model_head = layers.Dropout(0.3)(model_head)

        # Apply classifier
        model_head = layers.Dense(self.n_labels, name="preds")(model_head)
        # Apply activation output according to classification type
        model_head = layers.Activation(self.activation_output, name="probs")(model_head)

        # Obtain input layer
        if self.meta_variables is not None:
            input_layer = [model_input, model_meta]
        else : input_layer = model_input

        # Create tf.keras model
        model = Model(inputs=input_layer, outputs=model_head)

        # Return ready-to-use classifier model
        return model

__init__(n_labels, activation_output='softmax', meta_variables=None, fcl_dropout=True) ¤

Initialization function for creating a Classifier object.

The fully connected layer and dropout option (fcl_dropout) utilizes a 512 unit Dense layer with 30% Dropout.

Modi for activation_output: Check out TensorFlow.Keras doc on activation functions.

Parameters:

Name Type Description Default
n_labels int

Number of classes/labels (important for the last layer of classification head).

required
activation_output str

Activation function which is used in the last classification layer.

'softmax'
meta_variables int

Number of metadata variables, which should be included in the classification head. If Noneis provided, no metadata integration block will be added to the classification head.

None
fcl_dropout bool

Option whether to utilize a Dense & Dropout layer before the last classification layer.

True
Source code in aucmedi/neural_network/architectures/classifier.py
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
def __init__(self, n_labels, activation_output="softmax",
             meta_variables=None, fcl_dropout=True):
    """ Initialization function for creating a Classifier object.

    The fully connected layer and dropout option (`fcl_dropout`) utilizes a 512 unit Dense layer with 30% Dropout.

    Modi for activation_output: Check out [TensorFlow.Keras doc on activation functions](https://www.tensorflow.org/api_docs/python/tf/keras/activations).

    Args:
        n_labels (int):                 Number of classes/labels (important for the last layer of classification head).
        activation_output (str):        Activation function which is used in the last classification layer.
        meta_variables (int):           Number of metadata variables, which should be included in the classification head.
                                        If `None`is provided, no metadata integration block will be added to the classification head.
        fcl_dropout (bool):             Option whether to utilize a Dense & Dropout layer before the last classification layer.
    """
    self.n_labels = n_labels
    self.activation_output = activation_output
    self.meta_variables = meta_variables
    self.fcl_dropout = fcl_dropout

build(model_input, model_output) ¤

Internal function which appends the classification head.

This function will be called from inside an Architecture create_model() function and must return a functional Keras model. The build() function will append a classification head to the provided Keras model.

Parameters:

Name Type Description Default
model_input tf.keras layer

Input layer of the model.

required
model_output tf.keras layer

Output layer of the model.

required

Returns:

Name Type Description
model tf.keras model

A functional Keras model.

Source code in aucmedi/neural_network/architectures/classifier.py
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
def build(self, model_input, model_output):
    """ Internal function which appends the classification head.

    This function will be called from inside an [Architecture][aucmedi.neural_network.architectures] `create_model()` function
    and must return a functional Keras model.
    The `build()` function will append a classification head to the provided Keras model.

    Args:
        model_input (tf.keras layer):       Input layer of the model.
        model_output (tf.keras layer):      Output layer of the model.

    Returns:
        model (tf.keras model):             A functional Keras model.
    """
    # Apply GlobalAveragePooling to obtain a single spatial dimensions
    if len(model_output.shape) == 4:            # for 2D architectures
        model_head = layers.GlobalAveragePooling2D(name="avg_pool")(model_output)
    elif len(model_output.shape) == 5:          # for 3D architectures
        model_head = layers.GlobalAveragePooling3D(name="avg_pool")(model_output)
    # if not model output shape 4 or 5 -> it is already GlobalAveragePooled to 2 dim
    else : model_head = model_output

    # Apply optional dense & dropout layer
    if self.fcl_dropout:
        model_head = layers.Dense(units=512)(model_head)
        model_head = layers.Dropout(0.3)(model_head)

    # Apply metadata integration block
    if self.meta_variables is not None:
        # Define metadata input
        model_meta = Input(shape=(self.meta_variables,))

        # Integrate metadata into classification had
        model_head = layers.concatenate([model_head, model_meta])

        # Apply additional densely-connected NN layers
        model_head = layers.Dense(units=512, activation="relu")(model_head)
        model_head = layers.Dropout(0.3)(model_head)
        model_head = layers.Dense(units=256, activation="relu")(model_head)
        model_head = layers.Dropout(0.3)(model_head)

    # Apply classifier
    model_head = layers.Dense(self.n_labels, name="preds")(model_head)
    # Apply activation output according to classification type
    model_head = layers.Activation(self.activation_output, name="probs")(model_head)

    # Obtain input layer
    if self.meta_variables is not None:
        input_layer = [model_input, model_meta]
    else : input_layer = model_input

    # Create tf.keras model
    model = Model(inputs=input_layer, outputs=model_head)

    # Return ready-to-use classifier model
    return model