Skip to content

Integrated gradients

IntegratedGradients ¤

Bases: XAImethod_Base

XAI Method for Integrated Gradients.

Normally, this class is used internally in the aucmedi.xai.decoder.xai_decoder in the AUCMEDI XAI module.

Reference - Implementation

Author: Aakash Kumar Nain
GitHub Profile: https://github.com/AakashKumarNain
Date: Jun 02, 2020
https://keras.io/examples/vision/integrated_gradients

Reference - Publication

Mukund Sundararajan, Ankur Taly, Qiqi Yan. 04 Mar 2017. Axiomatic Attribution for Deep Networks.
https://arxiv.org/abs/1703.01365

This class provides functionality for running the compute_heatmap function, which computes an Integrated Gradients Map for an image with a model.

Source code in aucmedi/xai/methods/integrated_gradients.py
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
class IntegratedGradients(XAImethod_Base):
    """ XAI Method for Integrated Gradients.

    Normally, this class is used internally in the [aucmedi.xai.decoder.xai_decoder][] in the AUCMEDI XAI module.

    ??? abstract "Reference - Implementation"
        Author: Aakash Kumar Nain <br>
        GitHub Profile: [https://github.com/AakashKumarNain](https://github.com/AakashKumarNain) <br>
        Date: Jun 02, 2020 <br>
        [https://keras.io/examples/vision/integrated_gradients](https://keras.io/examples/vision/integrated_gradients) <br>

    ??? abstract "Reference - Publication"
        Mukund Sundararajan, Ankur Taly, Qiqi Yan. 04 Mar 2017.
        Axiomatic Attribution for Deep Networks.
        <br>
        [https://arxiv.org/abs/1703.01365](https://arxiv.org/abs/1703.01365)

    This class provides functionality for running the compute_heatmap function,
    which computes an Integrated Gradients Map for an image with a model.
    """
    def __init__(self, model, layerName=None, num_steps=50):
        """ Initialization function for creating a Integrated Gradients Map as XAI Method object.

        Args:
            model (keras.model):            Keras model object.
            layerName (str):                Not required in Integrated Gradients Maps, but defined by Abstract Base Class.
            num_steps (int):                Number of iterations for interpolation.
        """
        # Cache class parameters
        self.model = model
        self.num_steps = num_steps

    #---------------------------------------------#
    #             Heatmap Computation             #
    #---------------------------------------------#
    def compute_heatmap(self, image, class_index, eps=1e-8):
        """ Core function for computing the Integrated Gradients Map for a provided image and for specific classification outcome.

        ???+ attention
            Be aware that the image has to be provided in batch format.

        Args:
            image (numpy.ndarray):              Image matrix encoded as NumPy Array (provided as one-element batch).
            class_index (int):                  Classification index for which the heatmap should be computed.
            eps (float):                        Epsilon for rounding.

        The returned heatmap is encoded within a range of [0,1]

        ???+ attention
            The shape of the returned heatmap is 2D -> batch and channel axis will be removed.

        Returns:
            heatmap (numpy.ndarray):            Computed Integrated Gradients Map for provided image.
        """
        # Perform interpolation
        baseline = np.zeros(image.shape).astype(np.float32)
        interpolated_imgs = []
        for step in range(0, self.num_steps + 1):
            cii = baseline + (step / self.num_steps) * (image - baseline)
            interpolated_imgs.append(cii)
        interpolated_imgs = np.array(interpolated_imgs).astype(np.float32)

        # Get the gradients for each interpolated image
        grads = []
        for int_img in interpolated_imgs:
            # Compute gradient
            with tf.GradientTape() as tape:
                inputs = tf.cast(int_img, tf.float32)
                tape.watch(inputs)
                preds = self.model(inputs)
                loss = preds[:, class_index]
            gradient = tape.gradient(loss, inputs)
            # Add to gradient list
            grads.append(gradient[0])
        grads = tf.convert_to_tensor(grads, dtype=tf.float32)

        # Approximate the integral using the trapezoidal rule
        grads = (grads[:-1] + grads[1:]) / 2.0
        avg_grads = tf.reduce_mean(grads, axis=0)
        # Calculate integrated gradients
        integrated_grads = (image - baseline) * avg_grads
        # Obtain maximum gradient
        integrated_grads = tf.reduce_max(integrated_grads, axis=-1)

        # Convert to NumPy & Remove batch axis
        heatmap = integrated_grads.numpy()[0,:,:]
        # Intensity normalization to [0,1]
        numer = heatmap - np.min(heatmap)
        denom = (heatmap.max() - heatmap.min()) + eps
        heatmap = numer / denom

        # Return the resulting heatmap
        return heatmap

__init__(model, layerName=None, num_steps=50) ¤

Initialization function for creating a Integrated Gradients Map as XAI Method object.

Parameters:

Name Type Description Default
model keras.model

Keras model object.

required
layerName str

Not required in Integrated Gradients Maps, but defined by Abstract Base Class.

None
num_steps int

Number of iterations for interpolation.

50
Source code in aucmedi/xai/methods/integrated_gradients.py
51
52
53
54
55
56
57
58
59
60
61
def __init__(self, model, layerName=None, num_steps=50):
    """ Initialization function for creating a Integrated Gradients Map as XAI Method object.

    Args:
        model (keras.model):            Keras model object.
        layerName (str):                Not required in Integrated Gradients Maps, but defined by Abstract Base Class.
        num_steps (int):                Number of iterations for interpolation.
    """
    # Cache class parameters
    self.model = model
    self.num_steps = num_steps

compute_heatmap(image, class_index, eps=1e-08) ¤

Core function for computing the Integrated Gradients Map for a provided image and for specific classification outcome.

Attention

Be aware that the image has to be provided in batch format.

Parameters:

Name Type Description Default
image numpy.ndarray

Image matrix encoded as NumPy Array (provided as one-element batch).

required
class_index int

Classification index for which the heatmap should be computed.

required
eps float

Epsilon for rounding.

1e-08

The returned heatmap is encoded within a range of [0,1]

Attention

The shape of the returned heatmap is 2D -> batch and channel axis will be removed.

Returns:

Name Type Description
heatmap numpy.ndarray

Computed Integrated Gradients Map for provided image.

Source code in aucmedi/xai/methods/integrated_gradients.py
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
def compute_heatmap(self, image, class_index, eps=1e-8):
    """ Core function for computing the Integrated Gradients Map for a provided image and for specific classification outcome.

    ???+ attention
        Be aware that the image has to be provided in batch format.

    Args:
        image (numpy.ndarray):              Image matrix encoded as NumPy Array (provided as one-element batch).
        class_index (int):                  Classification index for which the heatmap should be computed.
        eps (float):                        Epsilon for rounding.

    The returned heatmap is encoded within a range of [0,1]

    ???+ attention
        The shape of the returned heatmap is 2D -> batch and channel axis will be removed.

    Returns:
        heatmap (numpy.ndarray):            Computed Integrated Gradients Map for provided image.
    """
    # Perform interpolation
    baseline = np.zeros(image.shape).astype(np.float32)
    interpolated_imgs = []
    for step in range(0, self.num_steps + 1):
        cii = baseline + (step / self.num_steps) * (image - baseline)
        interpolated_imgs.append(cii)
    interpolated_imgs = np.array(interpolated_imgs).astype(np.float32)

    # Get the gradients for each interpolated image
    grads = []
    for int_img in interpolated_imgs:
        # Compute gradient
        with tf.GradientTape() as tape:
            inputs = tf.cast(int_img, tf.float32)
            tape.watch(inputs)
            preds = self.model(inputs)
            loss = preds[:, class_index]
        gradient = tape.gradient(loss, inputs)
        # Add to gradient list
        grads.append(gradient[0])
    grads = tf.convert_to_tensor(grads, dtype=tf.float32)

    # Approximate the integral using the trapezoidal rule
    grads = (grads[:-1] + grads[1:]) / 2.0
    avg_grads = tf.reduce_mean(grads, axis=0)
    # Calculate integrated gradients
    integrated_grads = (image - baseline) * avg_grads
    # Obtain maximum gradient
    integrated_grads = tf.reduce_max(integrated_grads, axis=-1)

    # Convert to NumPy & Remove batch axis
    heatmap = integrated_grads.numpy()[0,:,:]
    # Intensity normalization to [0,1]
    numer = heatmap - np.min(heatmap)
    denom = (heatmap.max() - heatmap.min()) + eps
    heatmap = numer / denom

    # Return the resulting heatmap
    return heatmap